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Abstract--A coupled two-phase shear layer/liquid film calculation method is presented for the prediction 
of the simultaneous motion of a wavy liquid film and the two-phase stream flowing above it. Conservation 
equations, for both the shear layer and the liquid film, are cast in a compatible integral form and solved 
together through a space-marching technique. The system of equations resulting for both streams is 
enhanced through a set of semi-empirical models, appropriately modified to match the proposed method, 
in order to effect closure. These models deal with various physical aspects including (a) velocity profiles 
within the liquid film, (b) the structure of the interface and (c) any exchange of information between the 
two streams. Evaluation of the method is performed in cases where liquid films are developed along flat 
surfaces, for which measurements and/or numerical results are available. 
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1. I N T R O D U C T I O N  

Motion of fluids in the form of a liquid film, developing along solid walls of various shapes 
and orientations, is often encountered in quite a few processes and engineering systems. 
Applications may be found in thermal desalination and drying systems, nuclear reactors and in 
gas absorption and desorption related problems. Liquid film flows have a significant influence on 
heat and mass transfer processes and contribute to erosion and corrosion problems. In the 
turbomachinery field, the dry steam which expands below the saturation line, within the 
low-pressure stages of a steam turbine, results in the formation of water droplets which, in turn, 
form liquid films along the blades and the casing walls (Moore & Sieverding 1976). These films 
are developing under the influence of the high-velocity wet-steam flow; in their motion they collect 
droplets, either new ones from the flowing steam or those entrained from the previous stages. At 
very high gas velocities, atomization of the film occurs that forces lumps of water to re-enter into 
the core flow. 

During the last few decades, considerable experimental and/or numerical work has been carried 
out in this field and research was oriented mainly towards annular (Chu & Dukler 1975; Henstock 
& Hanratty 1976) or stratified (Andritsos & Hanratty 1987a; Cheremisinoff & Davis 1979) film 
flows in pipes at various inclinations. These studies intended to improve nuclear reactor safety. The 
free-falling or shear-driven film behaviour along inclined or horizontal plates was also the subject 
of numerous works (Khoshaim & Ryley 1976; Wittig et al. 1991), since it is involved in several 
chemical and mechanical engineering applications. 

The calculation of a liquid film, driven by the shear stress of a concurrently flowing two-phase 
stream, requires the strongly coupled solution of the two adjacent flow regimes. Most of the 
published works in this domain deal with the liquid film modelling and often overcome the shear 
layer solution using appropriate empirical information (Ryley & Patel 1971; Hammitt et al. 1975). 
They are merely based on integral approaches, expressing the film volume flow rate conservation 
(in the case of no mass exchange) or evolution (in the case of mass exchange). From a numerical 
point of view, these formulations are oversimplified and the implemented physical models and 
assumptions dictate the difference between them. The necessary empiricism covers various physical 
aspects, starting from simple ones (like the velocity profile used for the liquid film) up to more 
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complex ones (like the identification of the type of interfacial waves and the study of film 
atomization). Models are constantly being proposed (Dobran 1983; Andreussi et al. 1985; Brauner 
et al. 1985; Jurman & McCready 1989) for the examination of the above specific topics. On the 
other hand, there are methods which handle the gaseous stream with sophisticated numerical tools, 
like (parabolized) Navier-Stokes solvers with appropriate turbulence modelling (Witting et al. 

1991). These methods minimize the involved empiricism and constitute accurate procedures for the 
prediction of the coupled evolution of the two streams. The strong coupling between them requires 
successive solutions of the Navier-Stokes equations, leading to time-consuming calculations. In 
addition, in most of the above-mentioned works, the stream driving the film is a single-phase one, 
namely air or dry steam. 

The purpose of the present paper is to introduce a fully coupled shear layer/liquid film integral 
calculation method. The film is developing along a solid surface under the influence of a concurrent 
single- or two-phase stream and any mass or/and momentum transfer along their interface is 
appropriately modelled. Emphasis is put on the liquid film analysis rather than the shear layer one 
and the coupling procedure. The method is based on the "three-zone" approach, where the flow 
system is considered as decomposed in three adjacent parts, namely the inviscid zone, the shear 
layer and the liquid film. Each zone is described by its own physical model and particular attention 
is paid to the way information travels between adjacent zones. Horizontal or inclined plane, 
stratified flows may be handled by the present method. The analysis aims to represent complex 
flows, such as those encountered in steam turbines, while avoiding the time-consuming solution 
of Navier-Stokes equations. The liquid film is either supplied at a certain location or/and formed 
by droplets coming into contact with the solid walls. Validation of the method, either as a whole 
or in terms of the various implemented submodels, is finally presented. 

2. THE THREE-ZONE MODEL 

The decomposition of the flow domain into an inviscid and a viscous part was first introduced 
by Prandtl (1904) for single-phase flows. Since then, it has been widely used in engineering 
applications, due to the fact that it requires less computing time than the solution of the full 
Navier-Stokes equations. In the absence of a liquid film, the two-zone approach was previously 
extended by the authors to cover two-phase flows (Malamatenios et al. 1990, 1992). In these works, 
the possibility of using semi-empirical information, already developed for single-phase flows, in the 
case of two-phase flows as well, was discussed and justified. 

The liquid film comes to add its own contribution to the complexity of the flow domain by 
creating a third zone which interferes between the shear layer and the solid wall. It manifests its 
presence by producing a new boundary for the shear layer which is rough, the degree of roughness 
depending on the waviness of the film surface. Furthermore, this boundary is moving and the shear 
layer has to be considered as developing along a moving rough wall. Figure 1 presents the 
three-zone concept in a simplified but descriptive manner. Various additional flow features, like 
droplets leaving the liquid film and entrained into the core flow or droplets deposited onto the film 
also appear, in order to give a generalized picture of the physical phenomena that might occur. 

It is worth listing the basic assumptions governing the three-zone structure: 

(a) The external flow zone (zone I) is not directly influenced by the presence of the 
liquid film (zone III). The liquid film directly influences only the shear layer (zone 
II). 

(b) If a two-phase/liquid film flow is studied, droplets are treated in a Langrangian 
way in both the external flow (zone I) and the shear layer (zone II). Droplets 
impinging on the interface do join the liquid film. Nevertheless, during the 
external flow solution, they are handled through appropriate numerical bound- 
ary conditions. 

(c) The transpiration velocity technique (Lock & Williams 1987) is used for the 
coupling of zones I and II, as if the liquid film were absent. 

(d) From the shear layer point of view, the liquid film is seen as a rough boundary, 
moving with the interfacial velocity, which varies with streamwise distance. The 
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shear layer, in turn, manifests its influence on the liquid film by providing the 
driving force. 

A continuous exchange of information is thus necessary in order to model two-phase/liquid film 
flows. The two-phase inviscid solution (zone I) provides the viscous flow calculation with the 
gaseous phase velocity and pressure distribution at the edge of the shear layer, as well as with the 
droplet size, temperature, velocity vector and number density distribution along the whole length 
of the solid boundary. At each computational location, the shear layer (zone II) provides the liquid 
film (zone III) with the interracial stress, the streamwise pressure gradient and the increase in liquid 
flux caused by the deposition of droplets. The liquid film provides the shear layer with the 
roughness (necessary for the momentum coupling between the film and the shear layer), the 
interracial velocity and the film thickness. Besides, if film atomization occurs, the liquid film 
calculation must also provide information about liquid mass entrained in the gaseous stream; the 
atomization process is not studied at present. 

The integral formulation of the viscous part of the flow constitutes a parabolic problem in space, 
for both the two-phase shear layer and the liquid film. The computational procedure requires the 
solution of two integral equations for the gaseous phase, in conjunction with the transport 
equations for the droplets, while for the liquid film two additional integral equations are formulated 
and solved simultaneously with the shear layer's ones. Thus, a space-marching technique is 
established, for the prediction of the motion of shear-driven liquid films in turbulent, dispersed 
two-phase flows. The procedure to be described here deals with two-phase streams, but when the 
droplets' transport equations are omitted, the same algorithm can also handle liquid films driven 
by single-phase flows. 

3. T H E  T W O - P H A S E  S H E A R  L A Y E R  A N A L Y S I S  

3. I. Governing equations 

The gaseous phase conservation equations are first written in a curvilinear coordinate system 
(s, n), the s-lines of which coincide with the real flow streamlines. The subtraction of these 
equations, as written for the external-inviscid and the real-viscous flow, results in the corresponding 
deficit equations which are integrated along the normal to the streamwise direction (n). No further 
details are given here, since this part of the method is analysed in previous publications, as 

INVISCID 

INTERFACIAL LAYER f / o~ % 

Figure 1. The three-zone concept for the liquid film calculation method. 
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mentioned above; nevertheless, for the sake of completeness, the resulting integral equations are 
listed below: 

(a) the streamwise momentum integral equation, 

d Vs, Cr 
d(qpeV3"62)£ePe V3e62 ~- (H'2 - 1) Vs~ =--ds262 +AM+GM [1] 

and 

(b) the mean-flow kinetic energy integral equation, 

d(GpeV3o63) + r(? _ 1)M~ dVso 
GRe V3se 63 Vs e = ds + AE + GE, [2] 

where Vs, p and E stand for the streamwise velocity, gas density and void fraction, while 7 and 
r denote the ratio of the specific heats of the gases and a recovery factor (Papailiou & Bouras 1990), 
respectively. As to source terms, GM and G E express the effect of the dispersed phase on the 
continuous one, while AM and AE group together the influences of surface curvature and the normal 
fluctuation terms on the gaseous phase shear layer. The subscript e denotes values corresponding 
to the external (inviscid) flow. 

The definitions of the displacement, momentum and energy thicknesses (61 ~---Ht262, 62 and 63, 
respectively) and of the other integral quantities (friction coefficient Cr and dissipation factor CD), 
remain unchanged from the description for the two-phase flow case by Malamatenios et al. (1992). 
Nevertheless, it has to be pointed out that, when the two-phase shear layer is developing above 
a liquid film, integrations along the normal (n) direction are based on a gaseous phase velocity 
profile properly modified to account for the waviness of the shear layer/liquid film interface and 
the moving frame of reference. This will become clearer after perusal of section 3.2. 

3.2. Modifications due to the presence of  the film 

(a) By analogy to the way wall roughness is modelled in single-phase turbulent flows, a 
modification is employed to the shear layer velocity profile in order to account for the roughness 
of the interface. In particular, a modified version of the Coles' (1955, 1956) velocity profile is used, 
with the generalized form 

u + =f (n  +, 6 +) - Au +, [3] 

where Au + denotes the shift of the logarithmic profile, caused by the introduction of roughness 
in the law of the wall, according to Schlichting (1979). For the fully rough case, the change in the 
intercept Au + takes the form 

Au + 1 in ksu~ = -  + D ,  x = 0.41, D = - 3 ,  [4] 
K V i 

as a function of an equivalent sand-grain roughness ks. The latter is provided from the liquid film 
calculation, once the film wavy surface structure is known, by means of an appropriate model. The 
calculation of ks entails a complete knowledge of the liquid film characteristics and is deferred to 
a later section. 

(b) For shear layer flows in the absence of a liquid film, the non-dimensional quantities are all 
defined relative to the wall conditions. When the shear layer is developing above a moving film, 
the quantities must be defined relative to the interface conditions. Thus, the gaseous phase velocity 
profile becomes 

Ur \ P i J  

where ui is the interface velocity, z~ is the interfacial stress and Pi stands for the gas density. The 
non-dimensional distance from the film/shear layer interface is defined by 

(n  - f i ) u ,  
n + = - - ,  [6] 

Yi 
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Figure 2. A liquid film in an inclined plane. 

with vi the gaseous phase kinematic viscosity at the interface and h" the time-mean film height, to 
be introduced below. 

3.3. Method formulation 

Using u,/Vso and Re~, a Reynolds number based on the shear layer thickness 6, as unknown 
variables (Bouras 1993), the system of equations [1] and [2] is solved using a Newton-Raphson 
method. Between two successive computational positions along the solid wall, this system is 
handled simultaneously with a second one, which governs the liquid film flow (to be analysed in 
the following section), by introducing a sort of local iteration. The adoption of a two-parameter 
velocity profile for the gaseous phase, allows the above two quantities to be sufficient in order to 
establish all the other shear layer properties at a certain location (Papailiou & Bouras 1990). 

When the shear layer (zone II) is a two-phase one, droplet equations must be included in the 
local iterative scheme as well. Droplets are tracked within the shear layer and their trajectories, 
temperature and diameter evolution are calculated by solving the corresponding transport 
equations (Crowe 1982). Here, it is assumed that the droplets are sufficiently dispersed and 
droplet-droplet interaction is negligible; only deposition of droplets reaching the liquid film surface 
is allowed. The source terms GM and GE in [1] and [2] and the void fraction E are obtained as in 
Malamatenios et al. (1992). 

4. THE LIQUID FILM ANALYSIS 

4.1. Governing equations and problem formulation 

A rather simple physical flow configuration, where a liquid film is flowing along an inclined plane 
under the influence of an external interfacial stress, is illustrated in figure 2. This simple problem 
was considered for the derivation of the governing equations, even if it does not cover all possible 
liquid film flows. Additional physical aspects (like the curvature of solid walls) have been 
implemented in the programmed equations, but they are omitted here, for the sake of simplicity. 

The film behaviour is dominated by the irregular motion of its interface and is intrinsically 
time-dependent. Since the exact solution of the unsteady governing equations has to be avoided 
in industrial computations, the time-mean film thickness h is introduced instead and the 
unsteadiness of the interface is "steadily" modelled through its equivalent sand roughness. In the 
following, the bars denoting time-mean quantities are omitted, except for cases where emphasis has 
to be given. Assuming an orthogonal coordinate system (x, y), where x stands for the direction 
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parallel to the solid surface, the streamwise momentum equation in a steady form for the time-mean 
quantities reads 

Ou Ou 1 OP 1 O~ 
U ~X + V -~y "= PL OX "~ PL Oy g sin O, [7a] 

where the subscript L indicates the liquid phase. 
Under the assumption of a sufficiently small slope of the time-mean interface and that of a 

shallow liquid, the time-mean pressure P at a distance (y)  from the solid wall inside the liquid film 
is given by 

P = P~ + PLg(/7 -- y)COS 0, [7b] 

where Pi is the pressure at the interface. Equation [7b] results from the integration of the normal 
momentum equation along the normal to the wall direction. By combining [7a] and [7b], the integral 
form of the streamwise momentum equation reads 

-~xoff --Ui~xOff _ p0,i.,L0x 0 °/7]_ p~tTi Tw)-g/7s in0,  u2dy u d y =  +pLgcos  OX|+  -- [8] 

where zw is the mean wall stress. 
The integral form of the continuity equation is written as 

0 j q  
u dy - AQ = 0; [9a] 

AQ is the mass exchange between the liquid film and the outer flow and is positive when mass is 
added to the liquid film. The volumetric flow rate Q per unit width (in m2/s), is given by 

/ l h  

Q = ) i  u dy. [9b] 

It is a matter of rearrangement of [8] and [9a,b], to get the integro-differential equation 

1 (Zw Ti) + + / 7  sin 0 + -2 (Fti~ -/7g cos O) PL --~X ] g U~ ~ + (2ra~ - ui)aQ, [10] 

which, along with [9a], is solved in order to provide the film time-mean thickness/7 and the wall 
stress %. The average film velocity zi~, 

if: ~2, = ~ u dy, [11] 

and the shape factor F, defined by Hanratty (1983) as 

F = U 2 dy, [12] 

appear in the above integral equation. The second variable characterizes the film velocity, taking 
a value equal to 1.333 for a laminar liquid film. Equation [10] has a strongly non-linear character 
and is similar to the one proposed by Miya et al. (1971) for the instantaneous film thickness. In 
the latter work, this equation aimed at calculating the geometry of roll waves using empirical 
information for the driven shear stress. 

Equations [9a] and [10] constitute the system of two integral equations which is solved to yield 
the liquid film properties at each location, once these properties are known at the previous one. 
This system is solved in terms of the mean thickness t7 and the wall stress ~w using a 
Newton-Raphson method, in the context of the local iteration scheme between two successive 
locations, as introduced in section 3.3. All the remaining quantities are modelled through suitable 
closure conditions, while the inlet film thickness and flow rate must be specified. For numerical 
reasons, an infinitesimally small thickness and flow rate need to be provided at the inlet, even if 
the film is formed solely through deposition of droplets. 

It is worth noting that the interface stress ~i constitutes a direct outcome of the two-phase shear 
layer solution and an input for the liquid film, at the same time. The pressure gradient (dPi /dx) ,  
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being known from the solution of  the external zone I, is also an input for the liquid film calculation. 
The liquid film calculation provides the two-phase shear layer with the film thickness/7 and the 
velocity u~ of  the film at this height, which are needed for the construction of  the shear layer velocity 
profile from the interface up to the shear layer edge. The interracial roughness, which models the 
effect of the waviness of the interface on the turbulence of the shear layer, is also an outcome of 
the liquid film calculation procedure. 

4.2. Liquid film velocity profiles 
The calculation of the average film velocity a~ and the shape factor F requires the assignment 

of a velocity profile to the liquid film. The adopted profile is based on the decomposition of  the 
film into a continuous and a wavy layer region (Dobran 1983). The single-phase turbulence 
structure is assumed to be valid in the continuous layer and appropriate modifications to the 
structure of turbulence are introduced in the wavy layer. More specifically, for the continuous layer 
of the film the classical expressions of turbulent velocity profile are used: 

u + = y + ,  for y+ ~< 5 

u + = - 3 . 0 5 + 5 . 0 1 n y  ÷, for 5 < y + ~ < 3 0  

u * = 5 . 5 + 2 . 5 1 n y  ÷, for 3 0 < y + < h ~  " [13] 

if h ~- > 30. The non-dimensional distance y ÷ is defined by 

y+ =yu* u, = ('Cw~'/2, [14] 
VL ' \~ , /  

with u + the dimensionless film velocity ( u + =  u/u*) and VL the kinematic viscosity of the liquid 
phase. 

In the wavy layer region, the eddy viscosity is supposed to be proportional to the thickness of  
this layer. Thus, the following expression for the velocity inside the wavy layer is obtained: 

(Y+-h~-).I ( ri)Y++h~ 1 [15] 
u+=u+(h~ )-t ?;eft T 1-  1 - ~  w 2~+ , 

\ #L )wL 

where (/*o~r/#L)wL is the effective diffusivity for the wave layer and /7+ is the dimensionless film 
thickness. The (#,rr/#L)wL ratio is related to the (/7 + - h s  + ) quantity via the empirical formula 

(#efr~ 1 + C1(/~ + h +~" [16] 
\#L/wL 

where Ct and n are appropriate constants (Dobran 1983). The substrate film thickness h s results 
from the submodels used to describe the w a w  shape of  the shear layer/liquid film interface. 

4.3. Modelling the wavy interface 
For sufficiently low gas velocities, no waves are observed at the film surface. As the outer flow 

velocity increases, two-dimensional, periodic, finite-amplitude waves are observed to cover the film 
surface. These waves become progressively three-dimensional, at higher stream velocity (Dukler 
1972). Finally, a transition occurs from periodic to "roll" or "solitary" waves, which have a highly 
roughened interface, are not periodic and carry significant fluid with them (Jurman & McCready 
1989). At very high stream velocities atomization of  the film occurs, which is directly related to 
the presence of  roll waves on the film surface (Woodmansee & Hanratty 1969). According to 
Andritsos & Hanratty (1987b), a good-for-design-purposes approximation for the gas velocity, 
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required to initiate irregular large-amplitude waves, is predicted from the inviscid 
Kelvin-Helmholtz instability. Thus, transition takes place when the gas velocity becomes 

(Uc  - aa) 2 <<. [k2a + (PL - Pc)g]  FI [ ' tanh(k~) Po tanh(k/~)] 
p-~L k,9 -+ p~ kn ]' [171 

where Uo and Po are the mean velocity and density of the gas stream, k is the wavenumber, a is 
the surface tension of the liquid and A is the mean height of the driving stream. 

The film velocity profile and the equivalent sand roughness of the interface require a detailed 
description of the periodic and solitary waves structure. These are briefly presented in appendices 
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Figure 3. Comparisons of the numerical results with the formulae of(a) Kosky (1971) and (b) Kutateladze 
(1963). 
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Figure 4. Comparisons of the numerical results with the formulae of Kosky (1971) and Kutateladze 
(1963), for fl = 20. 

A and B, respectively. Once the type of interfacial waves is identified, the characteristic length scale 
ks of the interaction between the waves and the shear layer flow and the substrate film thickness 
hs is calculated. 

Cohen & Hanratty (1968) have reported, in the case of relatively thick films, that the ratio of 
the equivalent sand roughness to the root-mean-square (RMS) of the fluctuations in the film's 
time-mean height Ah', is approximately constant, namely 

ks = 3x/~Ah'. [181 

For periodic waves, Ah' is related directly to the mean wave height H through a simple relation: 

H 
A h ' -  2x/~. [19] 

The height H is deduced from the periodic waves model, described in appendix A. On the other 
hand, the solitary waves model of appendix B provides all the necessary geometric data for the 
calculation of Ah', based on its definition 

J f: Ah' = 1 (h -/~)2 dl, [20] 

where 2 is the wavelength. When the examined film flow is not in conformity with the assumptions 
used to derive [17]-[20], the latter must be used with reservations. 

5. SOLUTION ALGORITHM 

The successive steps of the solution algorithm are presented below. 

Step I 

External flow data for zone I are provided, concerning the distribution of the velocity 
components and the pressure gradient for the gaseous phase and all the necessary information for 
the complete description of the dispersed phase that enters or leaves the shear layer (zone II), in 
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the form of the droplets' velocity vector, diameter, temperature and number density distribution. 
All the above data are the outcome of an inviscid two-phase code. 

Step 2 

The coupled two-phase shear layer/liquid film solution takes place for zones II and III. This is 
done by a space-marching procedure, whose main feature is that the calculation proceeds one step 
forward after all the necessary flow quantities in the previous location have been computed, for 
both the shear layer and the liquid film flows. The above calculation is performed in the following 
iterative manner. 

Step 2.1. The "local" iterative scheme starts by assuming that all dependent variables at the 
current location are assigned the same values as those already calculated at the previous one. 

Step 2.2. Shear layer (zone II) equations [1] and [2] are first solved, under the assumed liquid 
film evolution, along with the droplet transport equations. 

Step 2.3. The liquid film (zone III) equations [9a] and [10] are solved in turn, making use of the 
calculated driving interfacial shear and the increment in the liquid flux due to droplet deposition. 
In this step, the film submodels, which were presented above, are used fully. 

These calculations are repeated until convergence is obtained, thus providing the profiles of the 
flow quantities across both the shear layer and the liquid film, at the current location. This 
completes one forward step. Step 2 is repeated for all the computational locations along the solid 
wall. 

Step 3 

Once the shear layer characteristics are found at all the positions along the solid surface, the 
transpiration velocities, acting as sources of momentum in the external-inviscid flow (zone I), are 
calculated and introduced in the two-phase inviscid calculation (Step 1). 

Steps 1-3 are repeated up to the global convergence of the viscous-inviscid interaction procedure. 

6. RESULTS 

6.1. Asymptotic behaviour of  liquid films on flat plates 

Validation of the liquid film velocity profile in use and of the asymptotic behaviour of the present 
method is attempted here. The comparisons stand for tap water film calculations along fiat plates 
under the simultaneous influence of interfacial stresses and gravity effects. A number of experiments 
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Figure 5. Time-mean film thickness for different film flow rates. 
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Figure 6. Interfacial velocity for different film flow rates. 

were collected and analysed by Dukler (1960) and Dukler & Wicks (1963). These experiments cover 
different flow configurations including: 

--vertical flows without interface shear (fl = 0); 
--vertical flows with interface shear (fl # 0); 
- - and  horizontal flows with interface shear (fl ~ 0). 

The analysis was based on a non-dimensional shear parameter fl and a non-dimensional film height 
~/, defined as 

(') 
/~=g:/'v~/" ,I= \vU " [211 

An additional parameter used was the film Reynolds number (Re L = 4Q/VL) which non-dimension- 
alizes the volumetric flow rate Q per unit width. Here, instead of directly comparing against the 
numerous experimental results or the approximations proposed by Dukler, comparisons are 
presented against the analytical formulation of Kutateladze (1963) and Kosky (1971)• These 
formulations showed a good agreement with the aforementioned experiments and were easy to 
programme• 

According to Kutateladze (1963), the non-dimensional film height is deduced from a simple 
formula, under the assumption of logarithmic profile across the film and a two-region turbulent 
flow analysis. The formula was 

/~+(12 + 10 In/~+) -- 156 = ReL. [221 

On the other hand, Kosky (1971) succeeded in reducing Dukler's curves into a single function of 
one variable, taking into account both interfacial shear and gravity terms. The non-dimensional 
film thickness/~+ is calculated through the two-region function 

(:ReLy'  
h=h+(ReL)=~, 2 // ' 

(0.0504(ReL) 7/s, 

Re L < 1000 
[23] 

Re L > 1000. 
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This resulted from the distinction between regions where a linear velocity distribution (u ÷ = y - )  
is used and others where the 1/7 th power law (u + = 8.74y +'/7) is applied. The algebraic formula 
relating the two non-dimensional film thicknesses t7 + and ~/is 

#+ ~_ q(t/sin 0 + fl)l/2, [24] 

where 0 is the inclination angle of the plate. 
Figure 3(a) interprets graphically relations [23], transformed in a parametric form similar to the 

one proposed by Dukler (1960) and Dukler & Wicks (1963). In the same figure, the results of the 
present analysis are also shown. It is worthy of mention that: 

(a) The present results are all for horizontal planes. 
(b) Marks correspond to the asymptotic mean film height obtained after the 

necessary length, with constant interfacial stress (zi or fl) and zero pressure 
gradient. 

(c) The calculated heights are independent of the initial film height (if, of course, 
the inlet height is physically acceptable and the solution covers a sufficient length, 
in order to reach its final asymptotic value). 

Figure 3(b) compares Kutateladze's formulae with the calculated results of the present analysis. 
It is evident that the numerical results are satisfactorily close to the theoretical ones. Comparing 
figures 3(a) and (b), one can observe that the present results are closer to those of Kutateladze, 
rather than to Kosky's approach, for moderate ReL. This was to be expected since Kutateladze 
based his analysis on a logarithmic velocity profile for the film, similar to the one used in the present 
method. On the other hand, for thinner films (ReL < 1000), the results of the present analysis 
become closer to Kosky's, since both approaches are based on a linear profile (u + = y +, y + < 5). 
To better represent this trend, the numerical results are plotted along with those of Kosky and 
Kutateladze in figure 4, for the value fl = 20. 

6.2. Motion o f  a shear-driven liquid f i lm in a turbulent gas 

Wittig et al. (1991) presented measurements of  wavy liquid films, driven by the shear stress of 
turbulent air flow, along a horizontal plate. Their experimental channel had a rectangular 
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and for all film flow rates. 

cross-section of a constant width of 60 mm;its height at the inlet was 83 mm, converging to a final 
one of 13 mm, which corresponds to the real test section. Along the centreline of the narrow part 
of the channel, a prefilming plate was placed, thus forming two equal gaps of 3.9 mm height at 
each side of the "test" blade. Water was supplied onto the prefilming plate through a row of holes 
with 0.5 mm dia and a lateral spacing of 0.8 mm. Heat transfer from the wetted wall to the film 
or adiabatic conditions were simulated by supplying water along one side or both sides of the 
prefilming plate, respectively. Their investigation was concerned with ambient pressures and 
temperatures up to 573 K. Measurements were taken by means of an optical apparatus and 
techniques based on the light absorption in the liquid. Most of them correspond to the film 
characteristics at a distance of 240 mm downstream of the film injection point. In the same work, 
the authors carried out "local" numerical calculations, based on both laminar and turbulent 
velocity profiles for the liquid film; their main conclusion was that the film exhibited laminar rather 
than turbulent characteristics. It is worth noting that for laminar films they used the linear velocity 
profile (u + = y+)  up to y+-~  16, while during the present calculations the non-dimensional 
time-mean height/~+ was found to vary between 8 and 24. 

In the present work, the developed liquid film calculation method is validated against selected 
test cases, presented in the aforementioned paper; for the selected cases, sufficient air and water 
data are provided and experimental, as well as numerical, results for the film thickness and the film 
surface velocity are available. With the pressure drop for the gaseous phase given in the original 
paper and with velocity and temperature equal to VG = 65 m/s and TG = 573 K, respectively, the 
predictions of the present method are compared with the experimental and numerical results of 
Wittig et al. (1991) in figures 5 and 6. During the present calculations, the film temperature was 
set equal to 90°C, for all the examined liquid film flow rates; the ReL ranged from 31 to 245. In 
all the examined cases, the film surface was found to be covered by roll waves. 

Figure 5 presents the two calculations along with the experimental results for the time-mean 
liquid film height at the aforesaid distance from the film inlet section. The present predictions 
compare very well with the experiment. On the other hand, figure 6 presents the interfacial film 
velocity, as calculated for the above cases. It can be seen that the present results, compared with 
those of Wittig et al. overestimate the interfacial velocity for all the liquid film flow rates examined 
herein. The interracial velocities calculated by the present method are overestimated in the small 

U M F  2 0 / 3 - - - K  
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and minimum flow rates, compared with the experimental values, as well. On the contrary, at higher 
film flow rates, the interfacial velocities calculated by the present method come closer to the 
experimental results, compared with the calculations of Wittig et al. (1991). In this flow rate range, 
measurements do present an abrupt increase in the interfacial velocity and a question arises about 
the stability of the film. It is to be noted that the quantity which is compared against the measured 
film surface velocity is the velocity at the time-mean thickness. 

6.3. Film f low  over s team turbine " t e s t "  blades 

Liquid film measurements along flat surfaces that are swept by steam, at velocities corresponding 
to flow conditions occurring in low-pressure steam turbine fixed rows, have been performed by 
Khoshaim & Ryley (1976). The ultimate goal of their work was to investigate the modelling of film 
breakdown and the formation of  dry spots. The experimental procedure consisted of gradually 
reducing the liquid flow rate until eventually a locally zero film height was observed. In the present 
paper, cases corresponding to a liquid flow rate greater than the minimum wetting rate, which 
represents the critical film breakdown condition, are investigated. The formation of dry patches 
cannot be handled so far by the present method. 

In the experiments, the flat blade (7.6 x 19 × 1.27 cm 3) was positioned in the middle of a 
rectangular 7.6 × 40 × 7.6 cm 3 test section and was capable of  being tilted to the horizontal about 
an axis perpendicular to the streamwise direction. In the present numerical study, the test blade 
coincided with the lower wall of the examined two-dimensional flow domain; the domain height 
was 3.16 cm, corresponding to half the height of the test section, if the blade height was also taken 
into account. The liquid film was introduced at the position x = 1.25 cm, which corresponds to the 
first measurement station. Nine different flow conditions were examined, for all possible combi- 
nations of the following steam and film conditions: 

(A) Steam conditions 
(A1) Pt = 0.927 bar 

TL = 370.67 K 
U~ = 24.8 m/s 

(A2) Pt = 0.866 bar 
TL = 368.87 K 
UG = 30.5 m/s 

(A3) Pt = 0.591 bar 
TL = 358.71 K 
Uv = 76.2 m/s 

(B) Film volume flow rate 
(B1) Q = 3.51 × 10-6m2/s (ReL~ 10.2to 11.6) 
(B2) Q =7.89 x 10-6m2/s (ReL ~ 23.0 to 26.1) 
(B3) Q = 12.61 × 10-6m2/s (ReL~ 36.7 to 41.7) 

The predictions are presented in figures 7-9 (solid or dashed lines) along with the experimental 
data (symbols). Each figure corresponds to a certain steam condition (A1, A2 or A3) and all the 
film flow rates (B1, B2 and B3). Knowledge of  both the film flow rate and the inlet film thickness, 
renders the problem overdefined in case of a specified interfacial stress. The present calculations 
were based on the exact film flow rate and reasonable steam/liquid interracial stresses; as a 
consequence, in figures 7-9, discrepancies exist at the inlet film height. Nevertheless, it is important 
to notice that a rapid thinning of  the film takes place which is able to eliminate any discrepancy 
occurring at the inlet, within the first few calculation positions. Along the major part of the blade, 
a fairly constant film thickness is predicted, in accordance to the measured values. This occurs due 
to the fact that the steam conditions remain almost constant along the blade. The measurements 
reveal a sudden decrease in film thickness towards the end of the blade, probably related to a local 
increase in steam velocity. Such an increase in steam velocity was not imposed in the present 
calculation and, consequently, the local film thinning was not predicted. On the contrary, the 
predicted film thickness remains "uniform" to the end of  the flow domain. Predictions are much 
closer to the experimental data for the lower film volume rates, where the film undertakes a fast 
transition to its asymptotic behaviour. In all the above cases, the film surface was covered with 
roll waves. 
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7. CONCLUSIONS 

In the present paper a numerical method for the prediction of the coupled two-phase shear 
layer/liquid film development along solid surfaces is presented. The method is based on the solution 
of a set of conservation equations, cast in an integral form, through a space-marching technique. 
The description of the solution procedure, hypotheses on which the method is based and the 
empirical information required in order to effect closure are presented in detail. Particular attention 
was paid to the study of the interface phenomena, the classification of the interfacial waves and 
the way they are modelled. Some key elements of the developed method and the experience gained 
during this development are summarized below: 

(1) The developed method, being very fast even on PCs, contains submodels for the 
various relevant physical phenomena. The modular way this method was built 
guarantees the easy implementation of any alternative submodel. 

(2) Two-phase shear layer and liquid film calculations are fully coupled in the sense 
that a common space-marching algorithm is established for both the shear layer 
(zone II) and the liquid film (zone III). As is evident from the presented 
algorithm, a unique sweep of the domain is required which contains an iterative 
(local) shear layer/liquid film calculation at each computational location. 

(3) It is to be pointed out that the present method is capable of providing the 
complete spatial evolution of the liquid film. The literature survey did not reveal 
any relevant computational method. Published models always provide infor- 
mation about the asymptotic behaviour of the liquid film, rather than its spatial 
evolution. From this point of view, the developed method is quite original. 

(4) Particular physical problems, related to the liquid film calculation as a whole, 
could be solved if appropriate models are used, based on physical principles and 
reasonable assumptions. Thus, the amount of additional information required to 
effect closure diminishes and controllable physical models replace empirical 
relations and constants. 

(5) Concerning the interfacial waves, two different families of waves could be 
handled, namely periodic and roll waves. A criterion was incorporated for the 
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transition between the two families. Each wave category was modelled with its 
own model; these are models appearing in the literature and their range of 
applicability requires further investigation. All the built-in submodels have been 
carefully adapted to the "basic" flow model. 

(6) Validation of the ability of  the developed method was attempted in a number of 
representative test cases for which experimental data were available. 
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APPENDIX A 

Linear analyses, based on Orr-Sommerfeld type equations, are not able to provide any 
information about the amplitude of periodic waves (Craik 1968). Using boundary layer consider- 
ations, compatible with those used in the present formulation, Jurman & McCready (1989) derived 
a weakly non-linear wave equation, describing the evolution of the film surface elevation y with 
respect to the time-mean thickness h', in a coordinate system moving with the wave celerity Cr. The 
waves were considered as individual travelling forms and the results were the celerity cr and the 
wave growth rate kci. In a second work by Jurman et al. (1989), the boundaries of the qualitative 
behaviour of the steady solutions, separating regions where no steady solutions exist from periodic 

waves, were obtained using the double-zero point analysis (Carr 1981). In this appendix, the above 
method is extended further in order to be able to predict, apart from the speed of periodic waves 
and the region of their occurrence, their amplitude as well. 
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The non-dimensional wave equation is approximated through a system of first-order equations 
of the form 

0 1 y 0 [yY¢ ] = [#, #2][y¢]+[ayE+byy¢], [All 

where the subscripts denote differentiation with respect to ¢ (~ = x - c r t )  and the envolved 
coefficients are derived directly from the work of Jurman et al. (1989). System [A 1] possesses three 
fixed points which represent stationary solutions. One of them is the uniform film solution 
(y =y¢ = 0) and the other is a shock solution (y = -#1 /a ,  y¢ = 0). 

According to Hwang & Chang (1987), the amplitudes of the periodic solutions, that bifurcate 
from fixed point 1 (#1 > 0) near the double-zero singularity, are given by 

f l  +,#, /a ,~ , ,  i f e = l  
[A2] Ymax ----" ~1 + Jpl/a[~, ifE = --1 

and 

I + I#~/al~, ife = 1 
Ymi,= +l#l/al~0, i f E = - - l ,  [A3] 

where e = -a / la]  and ct and ~1,0 are constants (Malamatenios 1993). 
The maximum and minimum values of the periodic solutions that bifurcate from fixed point 0 

(p~ < 0) are given by 

{ll +[pl/al( f l , --  I ), i f E = l  [A4] 
Ymax = q- I#~/al(fl - 1), if E = - 1 

and 

11 +l#,tal(fl  - 1), ifE = 1 [A5] 
Ymin= +lp,/al(f lo--1),  ifE = - - 1 ,  

where fl and fl~,0 are the new parametrizing constants. 
The maximum and minimum wave elevations, [A2]-[AS], are non-dimensionalized using the 

time-mean thickness/~ of the liquid film. Apart from the thickness/~, which is known from the film 
solution (section 4.1), an additional input to the periodic wave model is the wavelength 2, which 
is empirically estimated. The knowledge of the minimum and maximum heights is used for the 
calculation of the wave height H(=(Yma x --Ymin)fi). 

A P P E N D I X  B 

When roll waves are identified (see section 4.3), their structure needs to be modelled, in order 
to provide the required information concerning film thicknesses, wave amplitude and interfacial 
velocity. An enriched form of the roll wave model proposed by Brauner et al. (1985), is adopted 
herein. This model is briefly presented below, with emphasis placed on the proposed modifications 
necessary for the compatibility of the model with the present formulation. It should be noted that 
the original model has been validated only for relatively thick films, i.e. for mean film heights of 
the order of 0.5 mm. 

According to the adopted model, the roll wave is conceived as a composite of three different 
zones, namely the front, the back and the substrate zone, as illustrated in figure B1. Mass and 
momentum conservation are applied along each zone and partial solutions are matched at their 
common boundaries. The continuity equation, in moving coordinates, provides the first two- 
equations which could be selected from among the following three relations: 

h p ( V w  - Vp)  = h b ( V w  - -  V O  = hs(Vw - Vs) = ~, [ m ]  

where Vp, Vb and Vs are the "mean" film velocities at the corresponding locations, Vw is the wave 
velocity and ? is the discharge coefficient (constant in the moving coordinate system). In contrast 
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Figure  BI. Schemat ic  representa t ion  o f  the soli tary wave model .  

to the paper introducing the model, here y is deduced from the continuity equation for the roll 
wave as a whole, 

7 =/~Vw - O. [B2] 

This equation is advantageous since the mean height/~ consists of an input to the roll wave model, 
having the value calculated by [10], and Q is the known volume flux of the liquid film. 

The integration of the generalized Navier-Stokes equations yields the back zone film thickness 
hb, as the solution of the quadratic equation 

- - - -  + 2EV~, E = - -  p L g s i n o + d P ' ~  
E#L - -  E ~] \ /~L,/  dx ,]" [B3] 

A single positive root exists if E > O. When E < 0, two positive roots appear and the smaller one 
is retained. Assuming parabolic velocity profiles for the film, the "mean" velocity at point S is given 
by 

Similarly, 
x = hs/hb: 

1 /'hs Eh~ zi hs [B4] 
Vs=~sJ0 u ( y ) d Y = 3 - + # L  2 

a quadratic equation is formulated for the substrate-to-back zone thickness ratio 

F{] l" i l £ Ti Vw 
3 + + 2- T  h jx 2/..LLhb h 2  : 0 .  [ 8 5 ]  

The momentum balance at the wave front and trail, reads 

/hs + hp\ PEg COS 0 
pL[(V. -- Vs)2hs -- (Vw -- Vp)2hp] - - / . t L C / ~ i 2 f  + ", / ( ' q -  rw)Ar-t- ~ (h i - h2s) 

and 

/hp + hb\ PLg COS O (h ~ _ h~). 
pL[hp(Vp-- Vw)2-- hb(Vb-- Vw)2] m / 'LLE~---'~) 2w-k (Ti - "cw)'~w - 2 

[86] 

[B7] 
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Applying the hypothesis of the periodical distortion of the hydrodynamic boundary layer, which 
starts to develop from the wave front, and defining the length of the wave back as the point where 
the boundary layer reaches a thickness of hb, yields 

Aw = P_~L 1 - . [B8] 
/XL 

A detailed discusson about the shear factor K can be found in Brauner & Maron (1983). The total 
wavelength 2 is defined as 

2 = 2r + 2w + As [B9] 

and the overall material balance reads 

2Q i i -~w = [2shs + ~(hp + hO2w + ~(hp + hs)2d - 2_~. [B10] 
Vw 

Equations [B 1]-[B 10] constitute a system of 11 equations which are solved to calculate all quantities 
related to the frontal wave region (2f, hp, Vp), the wave back region (2w, hb, Vb) and the wave 
substrate (2s, hs, Vs), as well as 3 wave-related quantities (celerity Vw, wavelength 2 and discharge 
coefficient ~). Thus, the definition of 1 of the above 12 variables is required in order to close the 
system of 11 equations at hand. The externally imposed quantity is the wavelength 2, since it can 
be empirically correlated to the mean height h of the liquid film. According to Hanratty (1983), 
the wavelength of roll waves formed on thin liquid films is about 25 times the time-mean film height. 


